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Continuous-wave operation of a room-temperature

Tm:YAP-pumped Ho:YAG laser
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We report a continuous-wave (CW) 2.1-µm Ho:YAG laser operating at room temperature pumped by a
diode-pumped 1.94-µm Tm:YAP laser. The maximum output power of 1.5 W is obtained from Ho:YAG
laser, corresponding to Tm-to-Ho slope efficiency of 17.9% and diode-to-Ho conversion efficiency of 5.6%.
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High-power 2-µm lasers are useful for a variety of scien-
tific and technical applications, including remote sens-
ing and mid-infrared generation via pumping of optical
parametric oscillators[1,2]. In addition, continuous-wave
(CW) 2-µm lasers have significant potentials in laser
welding of transparent plastic materials as well as laser
surgery and therapy. Tm and Ho co-doped media with
large emission cross section can meet the requirement
of high peak power laser pulse operation at 77 K[3−6].
However, they also lead to very strong cooperative up-
conversion losses and hence a significant reduction in
the effective upper level lifetime and increased thermal
loading[7−9], so the Tm-Ho lasers are difficult to work
at room temperature with high CW power. A diode
pumped Tm(5.7%),Ho(0.36%):YAG laser with the max-
imum CW power of 0.42 W and slope efficiency of 19%
was demonstrated by Galzerano et al., but it suffered
from the roll-off of slope efficiency and temperature
sensitivity of the laser output[10]. One solution to this
problem is to pump singly-doped Ho3+:YAG in-band
with a Tm-doped solid-state laser or fiber laser[11,12].
This approach has the advantage of very low quantum
defect heating (∼ 9% in Ho:YAG) with the result that
high lasing efficiencies are attainable. In addition, the
Ho storage lifetime is not affected by the pump intensity
(gain)[13]. In 2000, a 33.7-W Tm:YLF laser pumped by
a laser diode (LD) was used to generate 18.8-W Ho:YAG
CW output, which represents a Tm:YLF to Ho:YAG
optical-to-optical efficiency of 56%[14].

In this letter, we demonstrated a CW Ho:YAG laser
pumped by a diode-pumped Tm:YAP laser at room
temperature. The 1.94-µm Tm:YAP laser line was em-
ployed for reasonably pumping Ho:YAG in the 5I7 and
5I8 multifold. Tm:YAP crystal was grown by Laser and
Optoelectronic Functional Material R and D Center,
Shanghai Institute of Optics and Fine Mechanics, Chi-
nese Academy of Sciences.

Absorption spectrum of Tm:YAP falls within the emis-
sion spectrum of commercially available laser diodes,
emitting peak of 795 nm[15]. The emission spectrum
of Tm:YAP (see Fig. 1) matches well with the absorp-

tion spectrum of Ho:YAG (Fig. 2). The peak emission
cross-section lines (1.94 µm) of Tm:YAP are capable of
pumping Ho:YAG efficiently.

The experimental setup is illustrated in Fig. 3. The
Tm:YAP crystal for the experiment was c-cut with di-
mensions of 3 × 3 × 5 (mm), and had the dopant con-
centration of 4 at.-%. The end faces were polished plane
and parallel, and anti-reflection (AR) coated at both 795
nm and 1.94 µm with reflectivity < 0.5%. The Tm:YAP
crystal was end-pumped by a fiber-coupled LD array
which delivered the maximum power of 25 W within the
fiber with the core diameter of 200 µm and numerical
apertures (NA) of 0.22. The emission wavelength of the

Fig. 1. Emission spectrum of 4%-Tm-doped YAP.

Fig. 2. Absorption spectrum of Ho:YAG.
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Fig. 3. Experimental setup of CW Ho:YAG laser pumped by
a diode-pumped Tm:YAP laser at room temperature.

diode was 793.5 nm with full-width at half-maximum
(FWHW) spectral width of 2 nm at 18 ◦C, and tempera-
ture tuned to 795 nm for optimal absorption and uniform
thermal distribution along the length of Tm:YAP crys-
tal. The resonator was a folded one with a cavity length
of 30 mm. The output coupler was a plano-concave one
with 250-mm radius of curvature, and was coated with
90% reflectivity at 1.94 µm. The depleted pump light
transmitted through the 45◦ dichroic mirror (R > 99.5%
at 1.94 µm and T < 90% at 795 nm), and was collected
and refocused by the 55-mm focal length lens and high-
reflection (HR) mirror at 795 nm.

With the focused pump beam size of 440 µm, the
confocal distance (2πnω2

p/M2λp, where n = 1.95 is the
refractive index of Tm:YAP, ωp is the pump beam ra-
dius, M2 = 88 is the pump beam quality factor, λp is
the pump wavelength) is calculated to be 8.5 mm that
is longer than the crystal length. The pump beam di-
ameter is well mode-matched with the laser beam in the
resonator, which is calculated to be 450 µm in diameter
throughout the crystal length. Figure 4 shows the output
power of Tm:YAP laser. Under the pumping power of
26 W available from the laser diode, the maximum power
of 8.7 W was obtained with the crystal temperature kept
at 18 ◦C. A linear regression fit to the data yielded a
slope efficiency of 41%. A threshold pump power of 4 W
was obtained.

The emission wavelength of Tm:YAP laser was mea-
sured with a WDG-30 monochrometer (300-mm focal
length, 300 lines/mm grating blazed at 2 µm). The
chopped light from exit slice was detected by a PbS de-
tector connected with a TDS-3012B digital oscilloscope.

Fig. 4. Output power of Tm:YAP laser versus input LD
power.

Fig. 5. Energy-level diagram for Ho:YAG laser.

The wavelength was located near 1935 − 1938 nm when
a 10% transmission output coupler was used and the
crystal temperature was kept at 18 ◦C during the mea-
surement.

Ho:YAG is a quasi-two-level system at room tempera-
ture (see Fig. 5) whose upper lasing level is 5I7 Ho man-
ifold and the lower one is 5I8 Ho manifold. The Ho:YAG
laser crystal was 5 mm in diameter and 20 mm long,
and doped with 1 at.-% holmium. The Ho:YAG laser
resonator comprises an plane mirror with R > 99.5% at
2.1 µm, a 45◦ dichroic mirror with R > 99.5% at 2.1 µm
and T > 98% at 1.94 µm, and an output coupler with
R = 95% at 2.09 µm. The curvature radius of output
coupler mirror is 200 mm, and the physical cavity length
is about 116 mm, resulting in a TEM00 beam radius of
260 µm in the Ho:YAG crystal. The Ho laser crystal
was mounted onto a copper heat sink, and the crystal-
to-copper heat sink interface used was In foil. Cooling of
the Ho:YAG crystal was carried out conductively at 10
◦C. The Ho laser crystal was placed in the vicinity of the
focus formed by the 200-mm focal length mode-matching
lens used for the Tm:YAP laser brightness determina-
tion experiments (described above). The pump spot at
the input surface of the Ho crystal was approximately
440 µm in diameter.

Figure 6 shows the Ho:YAG performance achieved
during CW operation. The maximum output power was
1.5 W with 8.7-W Tm:YAP pump power. A linear fit
to the data yields a slope efficiency of 17.9% with a
threshold of approximately 0.8 W. The optical-to-optical
conversion efficiency from Tm:YAP to Ho:YAG of 16.9%
was obtained. Diode-to-Tm:YAP efficiency was approxi-
mately 33.4%, and diode-to-Ho:YAG efficiency was 5.6%.
The lower efficiency was due to the weak absorption by

Fig. 6. Output power of Ho:YAG laser versus incident
Tm:YAP power.
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Ho:YAG at 1.94 µm, which is about 43%. A longer Ho
crystal and double-pass pump configuration with an op-
tical isolator could increase the conversion efficiency.

In summary, operation of a room temperature CW
Ho:YAG laser pumped by a diode-pumped Tm:YAP laser
was demonstrated. Output power greater than 1 W at
2.1 µm was achieved, corresponding to the diode-to-Ho
laser efficiency of 5.6%. No roll-off of slope efficiency was
observed in our experiment because of lower quantum de-
fect between the wavelengths of Tm pumping absorption
and Ho emission, which means that higher power from
Ho laser can be obtained by simply increasing the Tm
laser power.
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